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The Setting

To keep things as simple as possible, we assume:
Ω ⊆ R2 is open, bounded, connected, and simply connected.

∂Ω is C∞, n = outward unit normal.

τ is the unit tangent vector, with (n, τ ) in the standard
orientation—that is, a rotation of (e1,e2).

u0 ∈ C∞(Ω) vector field, div u0 = 0, and u0 · n = 0 on ∂Ω.

Working in 2D avoids certain technicalities related to uniqueness of
solutions, time of existence, and energy equalities versus inequalities.

Most of what we say will apply, however, for all higher dimensions.
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Incompressible Navier-Stokes and Euler equations

Navier-Stokes equations with no-slip boundary conditions:

(NS)


∂tu + u · ∇u +∇p = ν∆u on Ω,

div u = 0, u(0) = u0 on Ω,

u = 0 on ∂Ω.

Velocity u = uν , pressure p = pν .

Euler equations with no-penetration boundary conditions:

(E)


∂tu + u · ∇u +∇p = 0 on Ω,

div u = 0, u(0) = u0 on Ω,

u · n = 0 on ∂Ω.
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The central problem

Classical vanishing viscosity limit:

(VV ) u → u in L∞(0,T ; L2(Ω)) as ν → 0.

Let T = T (u0) ≥ 0 be the maximal time for which (VV ) holds.

Central question:

1 Is T (u0) > 0 for all u0 or

2 is T (u0) = 0 for some u0?

That is, does (VV ) hold in general, or does it fail in at least one
instance?
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The fundamental difficulty

Letting w = u − u, a standard energy argument gives:

1
2

d
dt
‖w‖2 + ν

∫ t

0
‖∇w‖2

= −
∫ t

0
〈w · ∇u,w〉+

∫ t

0
〈∆u,w〉+ ν

∫ t

0

∫
∂Ω

(∇w · n) · w .

All terms above are easily controllable except for the boundary integral:
w = −u 6≡ 0 on ∂Ω, so the boundary integral does not vanish.
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The plan

I will focus on the central question. This means that I will not discuss
recent results of several authors (including myself).

I plan to:

Explain how boundary layer correctors have been used to explore
this problem.
Make a conjecture.
Time allowing: Contrast the boundary layer corrector approach
with the Prandtl boundary layer expansion.
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Boundary layer correctors

A boundary layer corrector, z, is a velocity field on [0,T ]× Ω that has
the following properties:

1 z = −u on ∂Ω;
2 z and its various derivatives are sufficiently small, or blowup

sufficiently slowly with ν, in various norms;
3 z is either supported in a boundary layer Γδ for some δ = δ(ν) or

at least decays rapidly outside of Γδ;
4 z might also include an additional term, small in ν, supported

throughout Ω.
5 z is typically (for us, always) divergence-free.

Note that the Prandtl theory does not use a boundary layer corrector in
this sense.
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Boundary layer corrector estimates

Various boundary layer correctors have been used very successfully
for linear equations or situations where the nonlinearity of the
equations is weakened (for instance, by different boundary conditions),
or when there is some degree of analyticity to the data and boundary.
Such correctors are usually derived from formal asymptotics and
satisfy the resulting PDE, at least approximately.

A heat equation-based corrector employed by Gie 2015, for instance,
does have better estimates on ∂tz − ν∆z. Gie utilizes these improved
estimates to obtain bounds on the H1 norms of solutions to the Stokes
equations. There is no hope, however, to obtain such bounds for (NS).

In fact, the simple boundary layer corrector used by Kato in his seminal
1984 paper suffices to obtain all existing results (I know of) for
necessary and/or sufficient conditions for (VV ) to hold that rely on the
use of boundary layer correctors.
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Boundary layer corrector: inherent limitation

An inherent limitation to all existing correctors is that they remain
uniformly bounded in L∞([0,T ]× Ω) over ν. We do not expect
solutions to (NS) to remain so bounded, so the corrector is destined to
miss much of the behavior in the boundary layer.

The Prandtl approach has some hope of doing a better job, but it likely
suffers from the same limitation.
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Kato’s corrector

In 2D, Kato’s corrector is obtained by cutting off the stream function for
−u in the boundary layer, Γδ. Then:

‖zτ (x1, x2)‖Lp(Ω) ≤ Cδ
1
p , ‖zn(x1, x2)‖Lp(Ω) ≤ Cδ

1
p +1

,

‖∂τzτ (x1, x2)‖Lp(Ω) ≤ Cδ
1
p , ‖∂nzτ (x1, x2)‖Lp(Ω) ≤ Cδ

1
p−1

,

‖∂τzn(x1, x2)‖Lp(Ω) ≤ Cδ
1
p +1

, ‖∂nzn(x1, x2)‖Lp(Ω) ≤ Cδ
1
p

for any p ∈ [1,∞].

These estimates hold as well for ∂tz in place of z as long as δ is
independent of time.
Even if δ depends on time, other existing correctors do not do a
better job in any critical way.
Kato’s corrector is supported in Γδ.
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Using a boundary layer corrector

We pair the equation for w = u − u with w − z (which is
divergence-free and vanishes on the boundary) to obtain

1
2
‖w(t)‖2 + ν

∫ t

0
‖∇w‖2 ≤ C(1 + t)ν

1
2 + Ctδ

1
2

+
C
δ

∫ t

0

∫
Γδ

|uτun|+ ν

∫ t

0
(∇u,∇z) + C

∫ t

0
‖w‖2 .

Here and in what follows, ‖·‖ := ‖·‖L2(Ω).

For (VV ) to hold, it is sufficient that

1
δ

∫ t

0

∫
Γδ

|uτun| → 0 as ν → 0

and

ν

∫ t

0
(∇u,∇z)→ 0 as ν → 0.
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Sufficient conditions only

If we assume that

δ,
ν

δ
→ 0 as ν → 0

then we can control the second integral, since (recall w = u − u)

ν |(∇u,∇z)| ≤ ν |(∇w ,∇z)|+ ν |(∇u,∇z)|

≤ ν

2
‖∇w‖2 +

ν

2
‖∇z‖2 + ν ‖∇u‖L∞ ‖∇z‖L1

≤ ν

2
‖∇w‖2 + C

ν

δ
+ Cν,

giving

‖w(t)‖2 + ν

∫ t

0
‖∇w‖2

≤
(

C
(

(1 + t)ν
1
2 + tδ

1
2 +

ν

δ

)
+

C
δ

∫ t

0

∫
Γδ

|uτun|
)

eCt .
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The boundary integral

The boundary integral in the sufficient condition

1
δ

∫ t

0

∫
Γδ

|uτun| → 0 as ν → 0,

is similar to what appears in a paper of Temam and Wang 1998,
though there it is in terms of wτwn. In this form, it is like a recent paper
of Constantin, Elgindi, Ignatova, and Vicol.

So, for instance, when δ = να for some α ∈ (0,1), the above condition
is sufficient to insure that (VV ) holds. It is not possible to extend this to
α = 1, however, because then ν

∫ t
0(∇u,∇z) cannot be controlled and

so must be kept as a condition.
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Xiaoming Wang 2001

Though the approach we have described is not quite that taken in
Xiaoming Wang’s 2001 paper, it is in the same spirit. He shows that

1
δ(ν)

∫ t

0

∫
Γδ

‖∂τun‖2 → 0 as ν → 0 or

1
δ(ν)

∫ t

0

∫
Γδ

‖∂τuτ‖2 → 0 as ν → 0

is sufficient for (VV ) to hold. He also shows that the existence of some
such δ = δ(ν) for which one (and hence both) of these conditions holds
is necessary.

What’s nice about these conditions is that if the Prandtl theory holds,
one would expect ∂τun and ∂τuτ to be smaller than ∂nuτ , which would
dominate ∇u.
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The critical integrals

Now, suppose that δ = ν. In this case, the two time integrals in

1
2
‖w(t)‖2 + ν

∫ t

0
‖∇w‖2 ≤ C(1 + t)ν

1
2 + Ctδ

1
2

+
C
δ

∫ t

0

∫
Γδ

|uτun|+ ν

∫ t

0
(∇u,∇z) + C

∫ t

0
‖w‖2

are both critical in the sense that they can be shown to be bounded by
the basic energy inequality for the Navier-Stokes equations, but the
energy inequality is insufficient to show that these integrals vanish with
viscosity. (They are also critical in a scaling sense.)

Hence, we must assume that both integrals vanish.

It makes sense, however, to put them to eliminate z and put the
condition on the two integrals in a common form.

14 of 26



Common form: First critical integral

We return to (u · ∇u, z), from which the first integral came:∣∣∣∣∫ t

0
(u · ∇z,u)

∣∣∣∣ =

∣∣∣∣∫ t

0
(u · ∇u, z)

∣∣∣∣ =

∣∣∣∣∫ t

0
(u · curl u, z)

∣∣∣∣
≤ ‖z‖L∞([0,t]×Ω)

∫ t

0
‖u‖L2(Γδ) ‖curl u‖L2(Γδ)

≤ Cδ
∫ t

0
‖∇u‖L2(Γδ) ‖curl u‖L2(Γδ)

≤ Cδ1/2 ‖∇u‖L2([0,t];L2(Γδ)) δ
1/2 ‖curl u‖L2([0,t];L2(Γδ))

≤ C
(
δ

∫ t

0
‖curl u‖2L2(Γδ)

)1/2

= C
(
ν

∫ t

0
‖curl u‖2L2(Γν)

)1/2

.

Here, we did a fancy integration by parts and applied Poincare’s
inequality for a domain of width δ in the x2-direction, along with the
basic energy inequality for the Navier-Stokes equations.
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Common form: Second critical integral

For the second integral,

ν

∫ t

0
|(∇u,∇z)| = ν

∫ t

0
|(curl u, curl z)| ≤ ν

∫ t

0
‖∇z‖L2 ‖curl u‖L2(Γδ)

≤ Cνδ−
1
2

∫ t

0
‖curl u‖L2(Γδ) = Cν

1
2

∫ t

0
‖curl u‖L2(Γδ)

≤ Cν
1
2

(∫ t

0
1
) 1

2
(
ν

∫ t

0
‖curl u‖2L2(Γν)

) 1
2

= Ct
1
2

(
ν

∫ t

0
‖curl u‖2L2(Γν)

) 1
2

.
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Kato 1984: Necessary and sufficient conditions

Hence,

ν

∫ t

0
‖curl u‖2L2(Γν) → 0 as ν → 0

is a sufficient condition for (VV ) to hold.

In fact, this is also a necessary condition, as shown by Kato in 1984.
(Actually, Kato used ∇u instead of curl u; the “clever” integration by
parts above is due to K 2007.)

When δ = cν, the energy inequality we obtained holds in reverse (I
oversimplify!), which allowed Kato to show that the same condition is
also necessary.

Kato uses the corrector to obtain a criterion equivalent to (VV ) that
depends only upon u. The corrector itself is meaningless and is
discarded. This is in contrast to the Prandtl approach.
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Other Dirichlet boundary conditions

Suppose instead of no-slip for Navier-Stokes, we fix
g ∈ C∞([0,T ]× ∂Ω) vector field with g · n = 0 on ∂Ω and use

u = g on ∂Ω.

(NS) is still well-posed.

Note:
If g = u then (VV ) holds because the boundary integral vanishes.

In special cases, such as radially symmetric initial vorticity in a
disk or shear flow, (VV ) holds regardless of g.

Kato’s criteria and most (maybe all) of its descendants hold
unchanged for nonzero g.

So what’s so special about g = 0 (no-slip)?
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If convergence is a matter of size

If (VV ), for short time, is a matter of how large the solution to (NS)
gets in the Kato boundary layer, then one might believe, as I do, that:

Conjecture
Given any u0 and any g ∈ C∞([0,T ]× ∂Ω) with g · n = 0 there exists
T = T (g,u0) > 0 such that (VV ) holds.

If (VV ) for short time depends intimately on the structure of vorticity
formulation in the boundary layer, then one might instead believe that:

Conjecture
Given any u0 there exists g ∈ C∞([0,T ]× ∂Ω) with g · n = 0 such that
(VV ) fails for all T > 0.
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Multiply connected domains

Suppose, now, that Ω is doubly connected (an annulus). Require that
g · n < 0 (inflow) on one boundary component,
g · n > 0 (outflow) on the other boundary component,∫
∂Ω g · n = 0.

Then (VV ) is known to hold. This is a result of Gie, Hamouda, and
Temam 2012, building on a result for a periodic channel by Temam and
Xiaoming Wang 2002.

However, in this non-characteristic case, the boundary conditions for
the Euler equations are different, with the full velocity specified for
inflow, and only the normal component for outflow.

So in this case, distinct g’s will yield convergence to distinct
solutions to (E).
The behavior for no-penetration boundary conditions is hence
very different from that of inflow/outflow.
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Prandtl

(VV ) is perhaps best appreciated in the context of boundary layer
expansions. The mother of all such expansions was that performed
formally by Prandtl in 1904.

Prandtl hypothesized that outside of a boundary layer, Γδ, of width
δ = δ(ν), u = u, while inside the boundary layer, he assumed (I
simplify) that:

1 u varies more rapidly in the direction normal to the boundary.

2 The normal component of u remains small.
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Prandtl equations

Assume:
Ω = [0,1]× [0,∞), periodic in x .
Write u = (u, v).

Y =
y
δ

.

u = U(t , x ,Y ), v = ηV (t , x ,Y ), p = P(t , x ,Y ).
Using these assumptions in (NS), we find that terms balance when
η = δ =

√
ν. The leading order terms form the Prandtl equations:

∂tU + U∂xU + V∂Y V + ∂xP = ∂YY U,
∂Y P = 0,
∂xU + ∂Y V = 0.

The boundary conditions are U = V = 0 on ∂Ω and there are
conditions at Y =∞ to insure that (u, v) and p match the Eulerian
velocity and pressure.
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Well-posedness? Convergence?

Define the Prandtl velocity by

uP(t , x , y) = (U(t , x ,Y ),
√
εV (t , x ,Y )).

Guo and Nguyen 2011 (building on Gérard-Varet 2010 and Guo and
Tice 2009):

The Prandtl equations cannot be well-posed in
L∞(0,T ; H1

x ,Y (Ω)), where H1
x ,Y (Ω) is a weighted (decay at

infinity) H1 space. Convergence of u − uP to 0 cannot hold in
general in a similar space (this is not quite what they prove).

Well-posedness and convergence are known to hold in certain
cases—analytic data (Sammartino and Caflisch 1998) and
monotonic initial vorticity (Oleinik 1966)–and initial vorticity
vanishing near the boundary (Maekawa, 2014).

At best, then, we can expect the Prandtl equations to be well-posed in
a fairly weak sense.
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But if. . .

But suppose that the Prandtl equations are well-posed in, say,
L∞(0,T ; L2(Ω)) (we ignore issues of lack of decay at infinity). Then

‖u − u‖L2(Ω) ≤ ‖u − u‖L2(Ω\Γδ) + ‖u − uP‖L2(Γδ) + ‖uP − u‖L2(Γδ)

≤ ‖u − u‖L2(Ω\Γδ) + ‖u − uP‖L2(Γδ)

+ ‖uP‖L2(Γδ) + ‖u‖L2(Γδ)

≤ ‖u − u‖L2(Ω\Γδ) + ‖u − uP‖L2(Γδ) + ‖uP‖L2(Γδ) + Cν
1
4 .

Here, δ = ν1/2, and we have used that u ∈ L∞([0,T ]× Ω).
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So. . .

From

‖u − u‖L2(Ω) ≤ ‖u − uP‖L2(Γδ) + ‖uP‖L2(Γδ) + Cν
1
4

we conclude that assuming

(∗)
{

u → u in L∞(0,T ; L2(Ω \ Γδ)),
u − uP → 0 in L∞(0,T ; L2(Γδ)),

(VV ) holds if (and also only if)

(∗∗) ‖uP‖L2(Γδ) → 0 as ν → 0.

Maekawa 2014 showed that if the initial vorticity vanishes in a layer
near the boundary then (∗) holds. It follows from his estimates that
(∗∗) holds in that setting as well, so that (VV ) holds.

It is quite possible, however, that (∗) could hold without (∗∗) holding. If
so, it could be that u converges to something other than u.
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And thank NSF grants DMS-1212141.
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Some kind of convergence always happens

Theorem
There exists v in L∞(0,T ; H) such that a subsequence of (uν)ν>0
converges weakly to v in L∞(0,T ; H).

Proof.
(uν)ν>0 is bounded in L∞(0,T ; H);
uν = ∇⊥ψν for ψ ∈ H1

0 (Ω);
Thus, (ψν)ν>0 is bounded in L∞(0,T ; H1

0 (Ω));
H1

0 (Ω) is weakly compact so ∃ a subsequence, (ψn), converging
weakly in L∞(0,T ; H1

0 (Ω)) to some ψ lying in L∞(0,T ; H1
0 (Ω)).

Let un = ∇⊥ψn, v = ∇⊥ψ. For any h ∈ L∞(0,T ; H),

(un,h) = (∇⊥ψn,h) = −(∇ψn,h⊥) = (ψn,−div h⊥) = (ψn, curl h)

→(ψ, curl h) = (v ,h).



Convergence possibilities

Thus, it may well be that:
1 (VV ) holds or
2 (uν) converges to a solution to the Euler equations with different

initial data or some sort of forcing term or
3 (uν) converges to something other than a solution to the Euler

equations or
4 (uν) fails to converge to anything (as a full sequence).

As shown by Tosio Kato in 1984, however, if (uν) converges weakly to
u in L∞(0,T ; L2) then it converges strongly in that space.

The same does not hold if (uν) converges weakly to v in L∞(0,T ; L2)
and v 6≡ u.



Vortex sheet on the boundary

Similar, simple observations show that, for v ∈ L∞(0,T ; H1(Ω)),

Theorem (K, 2007)

(uν) converges weakly to v in L∞(0,T ; L2(Ω))

⇐⇒ curl uν → curl v − (v · τ )µ in (H1(Ω))′ uniformly on [0,T ],

where µ is arc length measure on the boundary.

That is, if convergence occurs in the energy space if and only if a
vortex sheet of a specific type forms on the boundary.

If v ≡ u then weak convergence to v in L∞(0,T ; L2(Ω)) can be
replaced by strong convergence by the result of Tosio Kato 1984.
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